數學:人教版-高中1年級 必修5-等比數列的前n項和 教學設計 教案![]() 教學準備教學目標熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。 教學重難點熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。 教學過程【復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。 【方法規(guī)律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差(或公比)等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。 一、基礎訓練 1.某種細菌在培養(yǎng)過程中,每20分鐘分裂一次(一個分裂為兩個),經過3小時,這種細菌由1個可繁殖成 ( ) A、511 B、512 C、1023 D、1024 2.若一工廠的生產總值的月平均增長率為p,則年平均增長率為( ) A、 B、 C、 D、 二、典型例題 例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,問到第n期期末的本金和是多少? 評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期(存期+1)利率]
例2:某人從1999到2002年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到2003年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從2000年開始,每年將出現以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)
例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數. 聲明:以上內容來自網絡,若有侵權,請聯系我們,立即刪除!所有的觀點由網友個人想法,不代表本公司也持此立場,感謝大家支持! 重慶YMU教育_執(zhí)業(yè)醫(yī)師護士藥師資格考試考前輔導 YMU教育(www.kawsbarofficials.com),全國熱線電話:023-89119533;提供繼續(xù)醫(yī)學教育學分、中小學課后輔導、美年大健康·慈銘體檢大牌定制健康體檢等服務;
|
提交后請在“會員中心-我的表單”查詢反饋結果! 繼培網:www.jipei.cc 統(tǒng)一客服:023-89119533 | |
* | |
* | |
* | |
* | |
* | |
提交
|